
PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

The Macintosh Developer’s Guide
to the Novell SDK

Richard Kendall Wolf <richwolf@uic.edu>
Paul Neumann <pauln@uic.edu>

You don’t like it, we don’t like it—none of us likes it really—but, painful as it is, we have to
admit the truth. And the truth is that the dominant network server platform found nearly every-
where today isn’t AppleShare running on a Macintosh. In fact, if you work in a mixed environment
of PCs and Macs, then the chances are very good that you use the services provided by Microsoft’s
Windows NT Server or Novell’s NetWare to share and access local network resources. That’s just the
way life is.

As a Macintosh developer, Windows NT doesn’t present you with any particular challenge
since a server running NT behaves just like a server running AppleShare—at least from the point of
view of your code. The flip side for you is that, in an NT world, you don’t share a common SDK with
your PC colleagues. And that makes it difficult for you to create client/server solutions that allow
Macs to become full partners with PCs in your enterprise.

Novell’s NetWare, however, offers you an opportunity to code on an equal footing with your PC
colleagues. While a NetWare server can behave just like an AppleShare server, Novell has provided
its Macintosh clients with the ability to become full peers in a NetWare environment. The trade-off
this time is that to you must learn to code with the Novell SDK.

Therefore, what we hope to do in this paper is present you with the basics of the Novell SDK as
seen from a Macintosh developer’s point of view. Of course it will not be possible for us to present
the entire SDK, or even to present a small part of it in any detail (after all, that would the subject for
an entire book). But we do hope to give you a feel for how you would go about working with your PC
colleagues to create cross-platform client/server applications using the SDK. Along the way we hope
to persuade you that there are compelling reasons for becoming more acquainted with the Novell
SDK. In addition, we’ll show you an example of code using the Novell SDK and that we feel you will
find both instructive and interesting. The code example is a utility that looks for and runs a login
script maintained by a NetWare administrator. Our client will mimic what Novell’s PC clients do,
but the difference for our client is that ours can run AppleScript.

PCs are the predominant platform and PC
networking solutions are ubiquitous. In
environments like these, you have to create
code that helps make Macs full partners
with PCs. Luckily, if you live in a Novell
environment, you have the ability to do just
that.

However, you may have some of the
same legitimate concerns that we did when
we began our paper.

Good Reasons to Skip
Our Paper
We know—you probably don’t care

much about this stuff. In fact, we’ll bet
you’d rather be reading about C++ pitfalls
or Java development. And we agree—we
weren’t sure if writing a paper about the
NetWare SDK would really be worthwhile.
But after some thought, we figured that
many of you probably live in environments
rather like our own—environments where

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Isn’t Novell Slowly Dying Away?
You may have heard from your PC

colleagues that Novell is moving slowly on
its way to oblivion. But the surprising fact
is that Novell remains the fifth largest
software manufacturer in the world with
over 79 million customers.1 In addition,
Novell’s share of the server operating sys-
tem market is still the highest at 41%.2

Are Macintosh Users Really
NetWare Users?
If you come from a predominantly Mac

environment, you may feel that every im-
portant server for your users is an
AppleShare server—and everything you
need to know about AppleShare you
learned in Inside Macintosh: Files and Inside
Macintosh: Networking.

But again, the surprising fact is that
many Macintosh users really do care about
the services offered by NetWare. We asked
AG Group’s networking troubleshooting
list3 if any of its members were currently
living in a NetWare world and whether
they’d like to get more developer support.
The following are typical of the many re-
sponses that we received.

Yes, we do live in a
NetWare environment—we
have over 130 NetWare serv-
ers actually. I’d love to have
some more tools!

In my role as the main
residential networking sup-
port person, I have been often
frustrated by the lack of good
end-user tools for the Mac.

And:

I’m the network administra-
tor for Apple’s ad agency,
based in Los Angeles. Across
all our North American of-
fices, we have an installed
base of 1000+ Macs (and more
in our European offices)—and
all use NetWare fileservers.

While our survey is by no means scien-
tific, we hope it changes how you feel about
developing software for Novell’s Macintosh
client.

The News from WWDC
You may have heard that Novell no

longer supports its Macintosh client soft-
ware and SDK. While that’s not completely
true—Novell does support its Mac client—
it is true that Novell hasn’t been doing a
very good job lately. But the good news
from this year’s WWDC is that Novell has
made an agreement with a third party,
Prosoft, Inc., to take over support for its
Macintosh client and SDK—and Prosoft
seems bent on providing the best possible
environment for Macintosh users and de-
velopers. You can find out more about
Prosoft by checking out the references at the
end of our paper.

A Little Background
Information
Simply stated, NetWare is Novell’s

network operating system capable of sup-
porting an extremely wide variety of host
operating environments including DOS,
Windows 3.1, Windows 95, Windows NT,
OS/2, UNIX, and the Mac OS. NetWare
provides network file and print services,
just as you’d expect from a network operat-
ing system. In addition, it also provides a
speedy web server, routing capabilities, and
a full compliment of administrative tools.
But most importantly, it contains a very

1 http://www.novell.com/corp/.
2 International Data Corporation (http://www.idc.com)

estimates that as of September 30, 1997 there were some
9.4 million server operating systems in use worldwide.
Based on data published by IDC in January, 1998, Novell
holds 41% of the market.

3 mailto: net-troubleshooting@lists.aggroup.com. This list
specializes in Macintosh networking issues.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

powerful mechanism for creating a direc-
tory of network services. In fact, directory
services management is at the heart of
nearly all NetWare environments. So in
order to understand how NetWare environ-
ments work, we have to spend some time
getting to know how NetWare Directory
Services work.

NetWare 4.x and the NDS Tree
Novell introduced its Directory Serv-

ices architecture, or NDS, when it released
NetWare version 4.0. NDS manages a hier-
archical database of objects that exist within
a NetWare 4.x environment. NDS objects
include things like servers, users, printers,
print queues, volumes—nearly anything
that can exist within a Novell network can
be represented by an NDS object. One of
the key features of NDS is that once you, as
a network user, are granted access to an
NDS-managed network, you may access
whatever objects for which the proper
permissions have been granted you no
matter where those objects exist in the
network.

Since NDS is a database, each object it
contains has certain properties and each of
those properties is associated with a set of
values. For example, let’s say there is a
network user whose name is Wyle E.
Coyote. As a Novell administrator, you
could set up a user object for Wyle and call
it WCoyote. You would add this user object
into the NDS database along with its prop-
erties and associated values. An example of
a property is WCoyote’s first name and,
obviously, its associated value is Wyle. In
addition, WCoyote’s middle initial property
would be set to E and his last name prop-
erty would be set to Coyote. NDS stores
additional property/value associations in
Wyle’s user object, such as any public keys
he needs for authentication, telephone
numbers where he can be reached, login
timestamps, as well as lots of other infor-
mation—and user objects are only one type

of object maintained by NDS—different
kinds of objects, such as print queues and
network volumes, contain different proper-
ties and associated values.

Figure 1: Sample NDS objects containing
various properties and values

In a large organization, there may be
tens of thousands of users—not to mention
hundreds of servers. Managing such a large
number of network objects can be a difficult
task especially if those objects aren’t organ-
ized somehow. Therefore NDS organizes
objects hierarchically by grouping them
into trees, organizations, and organizational
units.

NDS trees generally contain the whole
collection of objects for any particular envi-
ronment. Typically, even very large
institutions will choose to implement only
one tree for the entire organization. In any
NDS tree, you will find a series of organiza-
tional containers. For example, an
institution might have both a marketing
group and an engineering group. A logical
way to split up the institution’s tree would
be to put user objects associated with the
marketing group into a “Marketing” con-
tainer and the engineers’ user objects in an
“Engineering” container.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Figure 2: A simple NDS tree

Think of organizations and organiza-
tional units as types of network folders.
Inside folders (organizations, organiza-
tional units) you keep files or subfolders
(objects). In any NDS tree, however, only
top level folders can be organizations.
Subfolders located inside organizations
must be organizational units. Organizations
hold organizational units, which may, in
turn, hold other organizational units.

Naming in NDS
Novell has worked out a naming

scheme for referring to objects within an
NDS tree. Continuing with our example
above, the fully qualified name for Wyle E.
Coyote’s user object would be
CN=WCoyote.O=Marketing. The object
name is preceded with a CN=, organization
names are preceded with O=, and organiza-
tional unit names are preceded with an
OU=. You separate parts of any name with
periods. Using another example, my fully
qualified name at UIC is
CN=PaulN.OU=Comp.O=UIC. Names are
read left-to-right, leaf-to-root. For example,
my user object, PaulN, is contained within
the Comp organizational unit which, in
turn, is contained within the UIC organiza-
tion. The NDS tree root is not named.

Now specifying fully qualified object
names requires a lot of typing! Fortunately,
Novell has provided a shorthand way of
specifying NDS objects. Just leave off the
CN=, OU=, and O= parts of any fully quali-
fied name—NetWare will work out what
the other parts of the name must be. So,
using this shorthand, my user object can be

specified PaulN.Comp.UIC. The first part of
this shorthand name is referred to as its
common name (c.f., CN= in the fully quali-
fied example) and the last part is referred to
as its context.

Still with us? Okay, we’ve gotten
through all the things you need to know
about NetWare to get through the rest of
what we have to say. Obviously, there is a
lot more to know about NetWare than what
we’ve said here, so we’ve given you some
references to check out at the end of our
paper.

The Novell SDK
Installing and using the Novell SDK is

actually pretty painless. But before we can
begin getting our hands dirty with it, we’ll
have to consider some preliminary issues.
The first of these issues will be setting up
our development Macintosh so that it can
access our local NetWare environment. And
in order to do that, we’ll have to get and
install the NW Client for the Mac OS.

About NW Client for the Mac OS
Getting the NW Client for the Mac OS

is easy—Novell distributes its client soft-
ware freely over the web.4 The current
version of the NW Client for the Mac OS is
version 5.11. Since we’re running Mac OS 8,
we also have to remember to download the
client patches Novell provides for Mac OS 8
and install them as well. If you’re interested
in installation specifics, we refer you to
Novell’s web site.

If you live in Novell world like we do,
then you’ll notice that the NW Client for the
Mac OS offers you a lot of nice features.
One of the nicest is a true NCP (Novell Core
Protocol) requestor, just like the one
Novell’s PC clients have. In addition, the
NW Client for the Mac OS can make NCP
requests both through AppleTalk and IPX/
SPX. We’ll concentrate on using the NCP

4 http://www.support.novell.com/products/nwcmc511/.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

requestor directly through IPX/SPX be-
cause of the wider participation we can
have using it in our local NetWare environ-
ment.

Installing the SDK
Installing the Novell SDK is simple,

just copy the “NW Client for Macintosh
SDK” folder onto your Mac’s hard drive
from the Novell SDK CD.5 You can place
the SDK folder wherever you like—if you
do a lot of NetWare coding, you may want
to place it so that your development envi-
ronment can access it simply.

Inside the “NW Client for Macintosh
SDK” folder, you’ll find header files, librar-
ies for different compilers (including
Metrowerks’ CodeWarrior—the IDE we’re
using), and example code.

SDK 7
Like Apple, Novell releases SDK up-

dates from time-to-time. And with each
new SDK release Novell increments the
SDK’s release number. As of this writing,
the current SDK release is SDK 15. To work
with the Macintosh, you will need to obtain
SDK release 7 or any subsequent release.
Since the Macintosh SDK hasn’t changed
since release 7, you can get whatever re-
lease you like, but we recommend
obtaining release 7 specifically if you can.6

release number—the version released with
SDK 7 (and subsequent SDK releases) is
version 1.1.

A Really Lousy Application
 We are cramming a lot of information

into this paper, but you will surely need to
look something up that we won’t get a
chance to talk about here. To do that, you
will have to get familiar with the worst
application we’ve ever used—DynaText.
DynaText is Novell’s answer to
DocViewer—that is, an application you can
use to look up anything you need to know
about the Novell SDK. If it is any consola-
tion, DynaText is equally lousy on both PCs
and Macs.

However, if recent versions of
DynaText are any indication, things may be
improving dramatically in the future. Re-
cent versions of DynaText can access much
more than the bare facts about the Novell
API including things like tutorials on how
to use the Novell SDK and specific technical
information regarding which API calls and
libraries to use when you have a specific
purpose in mind. You can even use it to see
where Novell is headed in the future by
checking out its “futures” section.

You’ll find DynaText on the SDK CD.

5 If you don’t have the CD, you can get the SDK free
from Novell. Just register yourself at
http://developer.novell.com/cgi-bin/nvolve/register?
(you need to include the question mark).

6 We complained a lot and Novell offered to send us
a free CD. We’re not suggesting that our strategy
will work for you—we’re just saying what worked
for us and from that we’ll let you draw your own
conclusions.

Figure 3: DynaText

The reason why we’d like you to get
your hands on release 7 is because
release 7 contains the most (and best)
Macintosh documentation of any
SDK release.

And, just so you know, Novell
specifically assigns its Mac OS SDK a
version number unrelated to the SDK

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

How Novell’s SDK Works with
Your Application
When you link Novell libraries into

your application, your application may
contain the actual routines that perform the
services you require or stubs that call code
loaded into the system by various Novell
extensions during bootup. Novell seems to
want to strike a balance between the speedy
execution of your code and your code’s
size. The nice thing for you, as a developer,
is that your don’t need to know which
routines are stubs and which aren’t.

Figure 4: How your code works with
Novell’s libraries

Basic Novell Types
We’ll have to use some basic Novell

types in our code. It’s important that you
use these types rather than the simple types
you know because your code may not work
if you decide to port it to another platform.
For your reference, here are brief descrip-
tions of the major types you’ll encounter in
typical code.

Type Name What It Is
nint8 8-bit, signed integer
nuint8 8-bit, unsigned integer
nint16 16-bit, signed integer
nuint16 16-bit, unsigned integer
nint32 32-bit, signed integer
nuint32 32-bit, unsigned integer
nint singed integer
nuint unsigned integer

nreal32 32-bit real
nreal64 64-bit real
nreal80 80-bit real
nreal 80-bit real

nfixed 32-bit fixed-point number

nbool8 8-bit boolean
nbool16 16-bit boolean
nbool32 32-bit boolean
nbool boolean

nflags8 8-bit NetWare flags Same as nuint8
nflags16 16-bit NetWare flags Same as nuint16
nflags32 32-bit NetWare flags Same as nuint32

nstr8 8-bit character
nstr16 16-bit character

NWRCODE Return code Same as nint32

nptr Pointer
npproc Pointer to a function

pnptr Generic pointer to a pointer
pnpproc Generic pointer to a pointer to a function

p + type Pointer to type
p + p + type Pointer to a pointer to type

For pointers, p is generally prepended
to a type name to derive a pointer to that
type. For example, pnstr8 is a pointer to an
8-bit character. We’ll encounter other types
in our code, but we’ll describe them in
detail as they arise.

Reading and Writing from
Stream Objects
Recall that we discussed NDS objects

earlier. We said that NDS objects stored
hierarchical data composed of properties
and values. One property we’ll look at later

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

is a user object’s login script (the script that
gets run whenever a client logs into an NDS
tree). The login script’s value is stored as a
stream of bytes. Reading those bytes is
simple in every environment—except in the
UNIX and Macintosh environments. We
will see later that we need to make a special
set of API calls to read and write stream
data associated with NDS objects. We’re
mentioning this now because this is one
place where Novell’s API for the Macintosh
is really different than the APIs used by
other platforms. SDK 7 describes this, and
other similar differences, in detail. In gen-
eral, the Macintosh API set differs very little
from those used by other platforms—but
there are a handful of significant differences
of which you should be aware.

Okay, we’re done describing the SDK.
It’s time for code.

Code Example:
Our code example is going to be an

application that queries our local NDS tree
and obtains and executes any login scripts
it finds associated with our login object.
This mimics what Novell’s PC clients do
automatically—with a difference—the login
scripts we access can be coded using
AppleScript (but you could also use any
other scripting environment, if you prefer).

The first thing we'll do for our code is
setup a basic Mac OS Metrowerks project.
In addition to the usual Mac OS libraries,
we’re going to include appropriate Novell
libraries. Since we’re setting up a PowerPC
project, we’ll include Novell’s PPC libraries
in our project file (if we were creating a 68K
application or system extension, we could
make use of the A5 and A4 libraries Novell
also provides).

Figure 5: Basic Metrowerks project with
Novell libraries

Now that we have a project file set up
we can turn to writing code.

Novell likes to hype the idea that its
development environment is cross plat-
form. Therefore, as developers, we share
the very same set of header files with our
PC colleagues. And since PCs and Macs are
different kinds of platforms, Novell has to
provide us some way of specifying particu-
lars—such as how big doubles and ints are.
The way they do that is simple—they get us
to specify the kind of platform that we are
developing for before we include any of
their header files in our code. In fact, no
matter which platform you develop for, you
must tell the Novell header files what it is
before you include any of them in your
code. So let’s go ahead and do that.
N_PLAT_MAC is Novell lingo for “We’re a
Mac.”

/* Tell Novell what kind of platform we are */
#define N_PLAT_MAC

The following are the basic Novell
header files to include in your code if you

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

want to get access to the entire Novell API
set.

/* The basic set of Novell header files */
#include "nwcalls.h"
#include "nwnet.h"
#include "nwlocale.h"

Next comes a global used by the Mac
OS’s scripting components architecture.
Since we want to introduce you to the
Novell API, we’re going to skip a big, long
discussion of scripting components. If you
want to find out how our code manages to
compile and execute a series of scripts, we’ll
point you in the direction of Inside Macin-
tosh: Interapplication Communication. The
code we, um “borrowed,” is fully described
by Apple in Chapter 10. If you’re worried
about reading hundreds of pages of Inside
Macintosh, don’t sweat it—you can start
reading straight from Chapter 10 and by the
time you finish the first ten pages, you’ll
completely understand how “our” code
works.

ComponentInstance gScriptingComponent;

We’ll declare one last global variable
that will hold the name of the user object
whose scripts we’re interested in obtaining.

charuserObjectName[256];

Our main routine is simple—initialize
the Toolbox and run scripts.

void main(void)
{

NWCCODE error = noErr;

Initialize();

/* Get and execute all our scripts */
error = DoLoginScripts();
if (error == noErr)

return;

return;
}

Okay, now we’re ready to tackle the
good stuff. DoLoginScripts will get and
execute login scripts for our user object. The

reason the name is plural is because our
login object can have multiple scripts asso-
ciated with it.

NWDSCCODE DoLoginScripts(void)
{

NWDSCCODE error;
NWDSContextHandle context;
nuint32 flags;
nstr8 contextName[MAX_DN_CHARS+1];

The following is one area where the
Macintosh API differs from all others. In
order to get things going we have to make
this call. But be careful!—a lot of example
code from Novell assumes DOS or Win-
dows clients and it initializes itself using
NWCallsInit which does not work on the
Mac! Basically, though, it has the same
purpose in mind—initialize the API for use
by our code.

error = NWInitClientAPI();
if (error) {

DoError("Call to NWCallsInit failed",
error);

return(error);
}

Before we can begin getting and setting
NDS information, such as getting the login
scripts associated with a particular user
object, we have to create a context handle to
use when calling NDS routines. The context
handle returned by
NWDSCreateContextHandle points to a
structure whose contents contain our pro-
gram's current working context (remember
contexts from our discussion earlier?).
However, the context structure the handle
points to contains lots more information
than the context name alone. In fact, we
think that Novell probably could have
come up with a better name for what it calls
a “context handle.” At any rate, you mustn't
confuse the handle returned by
NWDSCreateContext with the handle
returned by Mac OS routines such as
NewHandle—your compiler will probably
complain if you try—but hey, if you’re
desperate, you might be tempted to try

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

some coercion. We know how you feel—but
don't try it here.

error =
NWDSCreateContextHandle(&context);

if (error) {
DoError("NWDSCreateContext failed",

error);
return(error);

}

Once we have a context handle, we’d
like to take a look at some of the informa-
tion to which it points and
NWDSGetContext is the routine for that.
Getting the information you want is sim-
ple—just pass NWDSGetContext a constant
whose value is the particular information
you are interested in. Right now, what we’d
like to know is how we’re currently refer-
ring to objects in our local NDS tree. We
might be referring to them by their types,
for example, or by using fully qualified
names. It turns out that we are going to
have to ask to have NDS names fully quali-
fied—this will make our lives simpler
because then we will be able to refer to
objects from the root of our local tree. So,
we’re going to get the current set of flags
associated with our current context, modify
a couple of them, and reset our context
accordingly. By the way, notice that from
now on if we encounter some kind of prob-
lem with our calls to Novell Directory
Services, we are going to free our context
handle before we exit this routine.

error = NWDSGetContext(context,
DCK_FLAGS, &flags);

if (error < 0) {
DoError("NWDSGetContext failed",

error);
goto terminate;

}

Okay, here is the place where we
change those context flags. Setting typeless
names means we don’t have to prefix eve-
rything with those “OU=” and “CN=” tags.
Canonical naming means that we always
have to give objects their full names—
“rich.mac.uic”—from the root of our local

NDS tree. The nice thing is that we will get
full names back whenever we ask for them.
Later we’ll see that this makes our code a
lot simpler.

flags |= DCV_TYPELESS_NAMES;
flags &= ~DCV_CANONICALIZE_NAMES;

Guess what we're going to do now?
Yup, we’re going to reset our context infor-
mation using NWDSSetContext passing our
new value for the context flag information.

error = NWDSSetContext(context,
DCK_FLAGS, &flags);

if (error < 0) {
DoError("NWDSSetContext failed",

error);
goto terminate;

}

Now that we will get all object names
the way we want, let's grab our program’s
current working context in that format. This
is why we hate Novell’s nomenclature—our
login object has a context within the tree
and our program has a context handle that
points to a specific place in the tree. Right
now, the place where our program’s context
handle points to is the place where our user
object lives.

error = NWDSGetContext(context,
DCK_NAME_CONTEXT, contextName);

if (error < 0) {
DoError("NWDSGetContext failed", error);
goto terminate;

}

Before we start getting actual script
data, let’s set our program’s context handle
so that it points to the root. We will have to
make our program look in multiple places
within NDS to get scripts that belong to us.
It will be simpler to specify those places by
using the root of our local tree as a reference
point

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

error = NWDSSetContext(context,
DCK_NAME_CONTEXT, DS_ROOT_NAME);

if (error < 0) {
DoError("NWDSSetContext to root failed",

error);
goto terminate;

}

Finally, we’ll find out just who we are
by getting the name of our user object.

NWDSWhoAmI(context, userObjectName);

PC clients can access no fewer than
four different scripts when logging into an
NDS tree and they get those scripts in a
specific order, so we will have to mimic that
order in our program. Now it turns out that
the last script a PC client can get is a default
script provided by Novell. As NetWare
administrators, we cannot modify that
script, and since it is not in a format that
Macs can readily understand, we'll skip it
for simplicity. It’s pretty dull anyway. In-
stead, we’ll concentrate on the other three
scripts and their execution. What we’ll do is
obtain each script, in its proper sequence,
try to run it, then move onto the next.

The first script our code tries to access
is the script associated with our user ob-
ject’s context.

error =
GetObjectScript(context,contextName);
if (error) {

DoError("GetObjectScript failed",
error);

goto terminate;
}

The second script our code tries to
access is the script associated with our user
object’s profile object (an NDS object can
point to another, something like an alias).

error = GetUserProfileScript(context,
userObjectName);

if(error) {
DoError("Attempt to read the objects

script name failed", error);
goto terminate;

}

The final script our code tries to ex-
ecute is the script associated directly with
our user object.

error =
GetObjectScript(context, userObjectName);
if (error) {

DoError("DisplayLoginAttribute failed",
error);

goto terminate;
}

terminate:

NWDSFreeContext(context);

return(error);
}

Let’s turn to GetObjectScript which,
hopefully, will seem pretty straightforward
to you after a short glance. We simply pass
it a context handle and the name of an
object that has a script associated with it.
Since the script property of any object is a
stream of bytes to be read and interpreted,
we examine its value as if it were a file.
Recall earlier that we said that we would
need to make special calls to the Novell API
in order to do that. However, the calls that
we need to make are not that unusual.

/* Open stream object associated with a login script */
error = NWDSOpenStream(dContext,

objectName, "Login Script",
(NWDS_FLAGS) 1,
(NWFILE_HANDLE *)&fHandle);

if (error) {
DoError("NWDSOpenStream failed",error);
return(1);

}

/* Read stream data */
error = NWReadFile(fHandle, 4095,

(unsigned long *)&readsize,
(unsigned char *)*scriptData);

/* Close steam data file */
NWCloseFile(fHandle);

Essentially, we treat
NWFILE_HANDLEs as we might FILE
pointers in the ANSI C libraries (they don’t
mix!—we’re simply saying that you can
think of them similarly).

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

One unusual thing you may be won-
dering about is why we’re taking special
care to get rid of newline characters in
GetObjectScript. The reason is that scripting
components on the Macintosh will not
handle them properly (in AppleScript you
will get script compilation errors). So we
take the time now to remove them.

The final two routines we’ll look at
effectively do one thing—retrieve the script
associated with our user object’s profile
object. That statement may sound some-
what odd, but NDS allows us to reference
one object in a tree from another (essentially
making one object a pointer to another). In
GetUserProfileScript, we first determine
what profile is associated with our user
object—which turns out that this is one of
our user object’s properties. Once we find
our profile object, we’ll ask it to show us the
script associated with it in
DisplayAttributes.

GerUserProfileScript may look com-
plex, but it really isn’t if you know how
parameter blocks work on the Macintosh.
pBuf_T is a pointer to an NDS data buffer.
We can stuff a pBuf_T with values to re-
quest information about NDS object
attributes (attrBuf) and supply an empty
pBuf_T to retrive it (outBuf). Once you
understand this, the code reveals its pur-
pose clearly. After GerUserProfileScript
discovers our user object’s profile object
(through its profile attribute),
DisplayAttributes retrieves the profile’s
script and passes it to GetObjectScript,
which we have already looked at in detail.

More Information,
References, Etc.

URLs
General information about Novell and its

products can be found at Novell’s web
site: http://www.novell.com.

Specific information about Novell
developer programs and services can
be found at Novell DeveloperNet:
http://developer.novell.com.

Information about Prosoft and its services
can be found at Prosoft’s web site:
http://www.prosofteng.com.

Books
There are lots of good books available

that describe NetWare and NetWare envi-
ronments, including specifics on how
NetWare Directory Services work. One such
book is CNE 4 Short Course by Dorothy
Cady, Drew Heywood, and Debra
Niedermiller-Chaffins, New Riders Publish-
ing, 1995.

Unfortunately, there are virtually no
good books that describe how to do
NetWare programming. The best (and,
apparently, only) title is NetWare NLM
Programming by Michael Day, Michael
Koontz, and Daniel Marshall, Novell Press/
SYBEX Inc., 1993. To make matters worse,
the last time we checked, this book was out
of print. The book has the NLM developer
in mind (NLMs are NetWare Loadable
Modules—the name Novell gives to server
executables), but there is a lot of informa-
tion in it of general interest to anyone who
plans to use the Novell SDK.

To get an explanation on how our code
was able to compile and execute plain text
as a script on the Macintosh, see Chapter 10,
Scripting Components, Inside Macintosh:
Interapplication Communication, Apple Com-
puter Inc./Addison-Wesley, 1993.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

All Our Code
/* Zorak.c */
/* ------- */
/* Run login scripts associated with a Novell user object */

/* Tell Novell what kind of platform we are */
#define N_PLAT_MAC

/* Includes */

#include <stdio.h>
#include <string.h>

/* The basic set of Novell header files */
#include "nwcalls.h"
#include "nwnet.h"
#include "nwlocale.h"

/* Constants */

#define kNil 0L/* Generic nil pointer */
#define kAlertID 128 /* Alert ID to

display errors */
#define kTimeOut 10240 /* Timeout value

to use when running scripts */

/* Globals */

/* Needed for the scripting components architexture */
ComponentInstance gScriptingComponent;
/* The user object whose login scripts we're interested in */
char userObjectName[256];

/* Prototypes */

void Initialize(void);
NWDSCCODE DoLoginScripts(void);
NWDSCCODE GetObjectScript(

NWDSContextHandle dContext,
pnstr8 objectName);

NWDSCCODE DisplayAttributes(
NWDSContextHandle dContext, pBuf_T buf);

NWDSCCODE GetUserProfileScript(
NWDSContextHandle dContext,
pnstr8 objectName);

OSAError RunScript(Handle scriptText);
void DoError(char *errorString,

short errorCode);

void main(void)
{

NWCCODE error = noErr;

Initialize();

/* Get and execute all our scripts */
error = DoLoginScripts();
if (error == noErr)

return;

return;
}

/* Initialize the Toolbox */
void Initialize(void)
{

/* Initialize all the needed managers. */
InitGraf(&qd.thePort);
InitFonts();
InitWindows();
InitMenus();
TEInit();
InitDialogs(nil);
InitCursor();

return;
}

/* No frills error reporting */
void DoError(char *errorString,

short errorCode)
{

Str255alertString;

sprintf((char *) alertString,
"%s:\t%04X.", errorString, errorCode);

c2pstr((char *) alertString);

ParamText(alertString, "\p", "\p", "\p");

Alert(kAlertID, kNil);

return;
}

/* Initialize Novell APIs and run login scripts associated with our
user object */
NWDSCCODE DoLoginScripts(void)
{

NWDSCCODE error;
NWDSContextHandle context;
nuint32 flags;
nstr8 contextName[MAX_DN_CHARS+1];

/* Initialize the NW API */
error = NWInitClientAPI();
if (error) {

DoError("Call to NWCallsInit failed",
error);

return(error);
}

/* Create a context handle for use by later calls */
error =

NWDSCreateContextHandle(&context);
if (error) {

DoError("NWDSCreateContext failed",
error);

return(error);
}

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

/* Get the current directory context flags so we can modify
them */

error = NWDSGetContext(
context, /* -- Context Handle */
DCK_FLAGS, /* -- Key */
&flags); /* -- Context Flags */

if (error < 0) {
DoError("NWDSGetContext failed",

error);
goto terminate;

}

/* Turn typeless naming on */
/* Turn canonicalize names off -- this means we will get full
names */

flags |= DCV_TYPELESS_NAMES;
flags &= ~DCV_CANONICALIZE_NAMES;

/* Set the directory context flags so they take effect */
error = NWDSSetContext(

context,/* -- Context Handle */
DCK_FLAGS, /* -- Key */
&flags);/* -- Set Flag Value */

if (error < 0) {
DoError("NWDSSetContext failed",

error);
goto terminate;

}

/* Now find out what Context we are logged in under ... */
error = NWDSGetContext(

context, /* -- context Handle */
DCK_NAME_CONTEXT, /* -- key */
contextName); /* -- value returned */

/* Reset it to be the [ROOT] context ... */
error = NWDSSetContext(context,

DCK_NAME_CONTEXT, DS_ROOT_NAME);
if (error < 0) {

DoError(
"NWDSSetContext to root failed",
error);

goto terminate;
}

/* Find out whose user object we're interested in */
error = NWDSWhoAmI(context,

userObjectName);
if (error < 0) {

DoError(
"NWDSSetContext to root failed",
error);

goto terminate;
}

/* Get the login script associated with our context */
error = GetObjectScript(context,

contextName);
if (error) {

DoError("GetObjectScript failed",
error);

goto terminate;
}

/* Get the login script associated with our user profile object */
error = GetUserProfileScript(context,

userObjectName);
if(error) {

DoError("Attempt to read the objects
script name failed", error);

goto terminate;
}

/* Get the login script associated with our user object */
error = GetObjectScript(context,

userObjectName);
if (error) {

DoError("DisplayLoginAttribute failed",
error);

goto terminate;
}

terminate:

NWDSFreeContext(context);

return(error);
}

/* Run script associated with NDS object name and context
handle */
NWDSCCODE GetObjectScript(

NWDSContextHandle dContext,
pnstr8 objectName)

{
NWDSCCODE error;
NWFILE_HANDLE fHandle;
long readsize;
Handle scriptData;
unsinged char *temp;
long i;
long j;

/* Open stream object associated with a login script */
error = NWDSOpenStream(dContext,

objectName, "Login Script",
(NWDS_FLAGS) 1,
(NWFILE_HANDLE *)&fHandle);

if (error) {
DoError("NWDSOpenStream failed",error);
return(1);

}

/* Reserve room for script data read from the stream */
scriptData = NewHandleClear(4096);

HLock(scriptData);

/* Read stream data */
error = NWReadFile(fHandle, 4095,

(unsigned long *)&readsize,
(unsigned char *) *scriptData);

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

/*Copy data to temporary storage, but ferret out newlines first*/
temp = (unsigned char *) malloc (4096);
for (i = 0, j= 0; i <readsize; i++)

if ((*scriptData) [i] != '\n') {
temp[j] = (*scriptData)[i];
j++;

}

/* Resize stream data handle */
SetHandleSize(scriptData, j - 1);
error = MemError();

/* Put data from temporary storage back into stream data
handle */

for (i = 0; i <j; i++)
(*scriptData)[i] = temp[i];

/* Run the script pointed to by the stream data handle */
RunScript(scriptData);

HUnlock(scriptData);

/* Close steam data file */
NWCloseFile(fHandle);

return 0;
}

NWDSCCODE GetUserProfileScript(
NWDSContextHandle dContext,
pnstr8 objectName)

{
NWDSCCODE cCode;
pBuf_ToutBuf = NULL, attrNames = NULL;
nint32iterHandle = -1L;

/* Allocate a buffer to hold the names of the attributes in which
we're interested */

cCode = NWDSAllocBuf(
DEFAULT_MESSAGE_LEN, /* Buffer Size

SDK defined as4096 */
&attrNames); /* Buff. Point.*/

if (cCode < 0) {
return(cCode);

}

/* We must initialize all *input* buffers before we can use them.
Note that buffers that pass info back from NetWare do not
need t be initialized. Initialization also indicates the operation
we'll be performing. */

cCode = NWDSInitBuf(
dContext, /* Context */
DSV_READ, /* Operation */
attrNames); /* buffer */

if (cCode < 0) {
NWDSFreeBuf(attrNames);
return(cCode);

}

/* Here's where put insert what we're interested - the "profile"
attribute of the user object. Note that you can fetch values for
more than one attribute. Call NWDSPutAttrName for each
attribute in which you're interested. */

cCode = NWDSPutAttrName(
dContext, /* context */
attrNames, /* in buffer */
"Profile"); /* attribute name */

if (cCode < 0) {
NWDSFreeBuf(attrNames);
return(cCode);

}

/* The next buffer is where NetWare will return the results.
Since it's passing info back, we don't need to initialize it. */

cCode = NWDSAllocBuf(
DEFAULT_MESSAGE_LEN, /* Buffer Size */
&outBuf); /* Buff. Point.*/
if (cCode < 0) {

NWDSFreeBuf(attrNames);
return(cCode);

}

/* The do loop fetches all the attribute names and associated
values. If we had put in multiple attributes, this would cycle
through all the attributes and their associated returned values.
*/

do {
cCode = NWDSRead(

dContext, /* Context */
objectName, /* Object name */
DS_ATTRIBUTE_VALUES, /* Info. Type --

Return names and
values */

FALSE, /* All Attrib */
attrNames, /* Attrib. names */
&iterHandle, /* Iter. Handle */
outBuf); /* Object info */

if (cCode < 0) {
NWDSFreeBuf(attrNames);
NWDSFreeBuf(outBuf);
return(1);

}

cCode = DisplayAttributes(dContext,
outBuf);

if (cCode < 0) {
NWDSFreeBuf(attrNames);
NWDSFreeBuf(outBuf);
return(1);

}

} while(iterHandle != -1L);

NWDSFreeBuf(attrNames);
NWDSFreeBuf(outBuf);

return(0);
}

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

NWDSCCODE DisplayAttributes(
NWDSContextHandle dContext, pBuf_T buf)

{
NWSYNTAX_ID syntax;
NWDSCCODE cCode = 0;
NWCOUNT attrCount;
NWCOUNT valCount;
char attrName[MAX_DN_CHARS + 1];
void *attrVal;
NWSIZEattrValSize;

/* Find out how many attributes we have. Our example
program only has one, but we still have to check.*/

cCode = NWDSGetAttrCount(
dContext, /* Context */
buf, /* attr. buff */
&attrCount); /* num of attr*/

if (cCode < 0)
return(cCode);

/* Pick out a attribute name from the returned buffer. This will
also return the "syntax" value for the attribute. We'll need that
next...*/

cCode = NWDSGetAttrName(
dContext, /* Context */
buf, /* attrib. buf */
attrName, /* attrib name */
&valCount, /* attr. val. cnt */
&syntax); /* Syntax ID */

if (cCode < 0)
return(cCode);

/* Next, we find out how large the attribute's size is before we
actually pull it from the buffer. This lets us alloc the required
memory. */

cCode = NWDSComputeAttrValSize(
dContext, /* Context handle */
buf, /* Result Buffer */
syntax, /* Syntax ID */
&attrValSize); /* Size of attrib.*/

attrVal = (void *)malloc(attrValSize);

/* Pop out the attribute's value */
cCode = NWDSGetAttrVal(

dContext, /* Context */
buf, /* result buf */
syntax, /* syntax id */
attrVal); /* attr. val */

if (cCode < 0)
return(cCode);

/* Now that we know which object we need to pull the "login
Script" attribute from, do it */

cCode = GetObjectScript(dContext,
attrVal);

free(attrVal); /* clean up */

return 0;

}

/* Compile and run script text using the Mac’s default scripting
environment – see Inside Macintosh: Interapplication
Communication for more details */
OSAError RunScript(Handle scriptText)
{

OSAErrorerr = noErr; /* An err we
better check */

OSAErrorignoreErr = noErr; /* An err
we can ignore */

AEDescscriptData;
AEDescresultData;
AEDesccomponentName;
OSAID scriptID;
OSAID resultID;

short i;

scriptData.descriptorType = typeChar;
scriptData.dataHandle = scriptText;

gScriptingComponent =
OpenDefaultComponent(kOSAComponentType,
kOSAGenericScriptingComponentSubtype);

err = OSAScriptingComponentName(
gScriptingComponent, &componentName);

if (err == noErr) {

scriptID = kOSANullScript;
err = OSACompile(gScriptingComponent,

&scriptData, kOSAModeNull,
&scriptID);

ignoreErr = AEDisposeDesc(&scriptData);

if (err == noErr) {

err = OSAExecute(gScriptingComponent,
scriptID, kOSANullScript,
kOSAModeNull, &resultID);

ignoreErr = OSADispose(
gScriptingComponent, scriptID);

if (err == noErr) {

err = OSADisplay(
gScriptingComponent, resultID,
typeChar, kOSAModeNull,
&resultData);

}

for (i = 0; i < kTimeOut; i++)
SystemTask();

}
}

return(err);
}

